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We investigate the evolution of nearby like-sign vortices whose centres are at different
vertical levels in a stably stratified rotating fluid. We employ two differently singu-
larized representations of the potential vorticity distribution in the quasi-geostrophic
equations (QG), in order to elucidate the pair-interaction behaviour previously seen
in non-singular QG numerical solutions. The first is an analytically tractable con-
servative (Hamiltonian) elliptical-moment model (EM) for thin-core vortices, which
exhibits a regime of very strong horizontal elongation of a vortex in response to the
strain induced by its partner. We interpret this as an early evolutionary stage towards
the irreversible dissipative merger and alignment interactions. This interpretation
is strengthened by weakly dissipative numerical solutions of a thin-core contour-
dynamics model (CD), which exhibit even further progress towards the completion
of these vortex interactions in the same regime.

In the EM model we classify the co-rotating stationary states which exist always
for vertically offset thin-core vortices. However, the mutual strain field among the
vortices cannot be balanced by co-rotation in a weakly elongated stationary state for
a certain class of neighbouring, but substantially non-aligned, vortex configurations,
and our interpretive assumption is that such configurations will rapidly evolve in
non-singular QG solutions towards a more aligned configuration through significantly
non-conservative reorganizations of the potential vorticity field. Both the EM and CD
models show qualitatively similar regime boundaries between evolutions with weakly
and strongly deformed vortices. In particular, there is a fairly close correspondence
between the occurrence of strong vortex elongation in the EM solutions and significant
filamentation and splitting in the CD solutions.

1. Introduction
Large-scale atmospheric and oceanic motions are approximately geostrophic be-

cause of the influences of planetary rotation and stable density stratification. These
flows often exhibit long-lived dynamically important patterns with a high degree of
vertical correlation, often extending throughout the depth of the atmospheric tropo-
sphere or oceanic thermocline (if not the entire water column). Since the forcing of
these motions is typically vertically more localized than their realized response, there
must be evolutionary processes capable of establishing this correlation.

High-resolution numerical simulations show that, in both two- and three-
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dimensional decaying geostrophic turbulence (2D and 3D QG), coherent vortices
with spatially localized concentrations of potential vorticity emerge from an isotropic
random initial state, and they eventually dominate the flow evolution (McWilliams
1984, 1989, 1990). The vortices move by mutual advection in an essentially conser-
vative fashion except during close approaches when strongly dissipative interactions
occur. The most important of these interactions occur between like-sign vortices:
namely horizontal merger in 2D and 3D QG, where much of the core material of
two vortices becomes entwined to form a single larger vortex, and vertical alignment
in 3D QG of vortices centred at different vertical levels. With time, these processes
reduce the vortex population, leading to fewer, larger, vertically grouped vortices.
These vortex population tendencies are associated in both 2D and 3D QG with the
approximate conservation of energy and its transfer to larger spatial scales (an inverse
cascade), as well as the strong dissipation of potential vorticity variance (enstrophy)
by its transfer to smaller scales (a forward cascade) – see Charney (1971).

Since merger occurs in the simpler two-dimensional case, it is at present better
understood than alignment. Two-dimensional merger occurs when two vortices of the
same sign and within a certain critical distance of each other mix a substantial portion
of their core vorticity and become a single vortex (Melander, Zabusky & McWilliams
1988); this simple characterization is more apt for vortices of comparable strength
since the interaction of quite disparate vortices leads to greater vorticity fragmentation
in solutions of the contour-dynamics (CD) model (Dritschel & Waugh 1992; Dritschel
1995). Strong elongation of the vortex core in the initial stage of a merger results from
the strong strain imposed by its nearby like-sign partner, and this elongation leads
to vortex centres approaching each other in order to conserve angular momentum.
Merger involves filamentation of the vorticity field and dissipation of the enstrophy,
while preserving angular momentum about the vorticity centroid and the kinetic
energy (at large Reynolds number). Two like-sign vortices separated by more than
this critical distance remain separate and pulsate about a co-rotating stationary
state. This co-rotating stationary state ceases to exist when the original separation
distance is less than the critical value predicted well by a truncated elliptical-moment
model (EM) for vortex movement and elongation (Melander, Zabusky & Styczek
1986; 1988; Abrashkin 1987). The absence of a co-rotating stationary state for small
separation distances is connected with an unbounded elongation in time of the vortex
core in a strong enough strain (e.g. Kida 1981). Thus, the merger condition in two
dimensions is intimately connected with the non-existence of a non-axisymmetric
stable co-rotating stationary state close to the initial configuration. Merger is the
principal means of evolution of the population of coherent vortices in decaying
two-dimensional turbulence, and the ultimate outcome of all possible mergers is a
non-turbulent end-state of either a single monopole or a vortex dipole pair, depending
upon whether the the total circulation is non-zero or not (Carnevale et al. 1992).

An early demonstration of alignment was made for the free evolution at modest
Reynolds number in a two-layer QG model. From random initial conditions, a strong
correlation developed between flow in the two layers, and the late time evolution
was almost entirely barotropic (i.e. aligned) and on scales large compared to the
internal deformation radius (Rhines 1977). This was interpreted as a consequence of
the dual conservation of energy and potential enstrophy within wavenumber triads by
Salmon (1982). Subsequent numerical solutions of fully three-dimensional decaying
geostrophic turbulence at larger Reynolds number demonstrated the emergence of
sparsely distributed coherent vortices (McWilliams 1989, 1990; McWilliams, Weiss
& Yavneh 1994). These vortices emerge by a dual self-organization processes of
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Figure 1. Potential vorticity field q(x, y, z) at successive times in decaying geostrophic turbulence
(from McWilliams et al. 1994).

horizontal axisymmetrization and vertical alignment, with correlation lengths whose
aspect ratio H/L is roughly equal to f/N. A long-standing prediction of statistical
theories is that geostrophic turbulence evolves to be spatially isotropic with this
aspect ratio (Charney 1971; Rhines 1979; Herring 1980). More precisely, though, the
mean H/L in numerical solutions is somewhat less than f/N after the vortices have
developed, at least on the vortex-dominated scales smaller than the most energetic
one.

With further evolution, however, separate vortices interact strongly when they
make close approaches to each other during their chaotic motions (as occurs even
in a point-vortex model), and one of the important outcomes is for the horizontal
separation between the centres of like-sign vortices at different levels to diminish on
average. An effect of this is for motions on spatial scales at least as large as the
most energetic one to develop large vertical correlation lengths (i.e. to become more
nearly equivalent-barotropic). The eventual outcome of this, after very many close
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vortex interactions, is a non-turbulent stationary state of two well-separated columns
of aligned axisymmetric same-sign vortices. Stages in this evolutionary sequence are
illustrated in figure 1. Thus, alignment enters into the dynamics of coherent vortices
in several stages: the initial self-organization of an individual vortex; recovery from
tilting deformations induced by vertical shear (in close approaches); and evolution
towards the horizontal coincidence of vortices at separate levels.

A few studies have already been made of alignment of isolated geostrophic vortices.
The simplest baroclinic system is a two-layer QG CD model, with two patches of
potential vorticity located in the different layers. The behaviour of a given initial
configuration of potential vorticity has been shown to depend on its proximity to a
doubly connected co-rotating stationary state (Polvani 1991). The novelty of alignment
with respect to a merger is that in a two-layer fluid, the co-rotating stationary state
exists also for small horizontal separation of vortices in different layers with a large
amount of vertical overlap, which is impossible for vortices in the same layer. If
an initial configuration is far from any stationary state, it has to rearrange itself
considerably (through repeated filamentation) before it can approach a stationary
state. Hence the occurrence of both merger and alignment, which are essentially
inviscid processes in the early stages, depends on whether the vortex pair configuration
is close to a stationary state; if not, then the vorticity often rearranges itself to the
‘closest’ available stationary state through an ultimately dissipative evolution. The
recent development of the CD algorithm for three-dimensional QG has been used
to demonstrate the importance of filamentation, hence enstrophy dissipation, in the
evolution of an individual vortex with an initial potential vorticity distribution that
is vertically tilted (Dritschel & Saravanan 1994; Viera 1995).

The simplest singularized model for 3D QG is point vortices with infinitesimal
core size with movement by mutual advection among the vortices without any effects
of core deformation (Gryanik 1983); since no tendency is found for alignment in
this model, core deformations can be inferred to be important. The evolution of a
three-dimensional QG vortex with a finite-size ellipsoidal vortex of uniform potential
vorticity in a horizontally and vertically sheared external flow has been analysed
by Zhmur & Pankratov (1989), Zhmur & Shchepetkin (1991), and Meacham et al.
(1994). Using this approach for investigating the interaction of a vortex pair, Zhmur
& Shchepetkin (1992) have shown a tendency for the ellipsoidal vortices to come
together and collapse if the initial distance between them is smaller than a critical
value. However, they considered only vortices at the same vertical level and thus
demonstrated a tendency towards merger in a manner similar to two-dimensional
QG.

As a next step toward understanding the interaction of vertically offset vortices, we
consider the dynamics of vortices with an infinitesimal vertical thickness of the core
region of uniform potential vorticity. This is an intermediate singularization between
the point-vortex model and the ellipsoidal model of a vortex core with finite thickness;
it takes into account only horizontal deformations of the vortex. However, when the
vertical separation between thin vortices is small, their interaction may describe also
the evolution of the shape of an individual vertically tilted vortex. The assumption
of a thin core is consistent with the observed structure of some oceanic eddies, e.g. it
reproduces the position of maximum angular velocity at the core boundary of young
warm-core rings (Sutyrin 1989).

To analyse the interaction of vertically offset vortices with thin cores, we develop
a perturbation approach assuming that the vortex centres are remote from each
other compared to the size of an individual vortex. The interaction of vortices is
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described in terms of the centroid motion, the horizontal elliptical deformation, and
the rotation of the axis of the elliptical vortex in a manner similar to the EM
model in 2D (Melander et al. 1986). This problem has a Hamiltonian formulation,
as previously shown, in particular, for vortices with an ellipsoidal core by Zhmur &
Pankratov (1990). As a partial assessment of the validity of this three-dimensional
EM model, we compare its solutions with those of the less severely singularized
three-dimensional QG CD model (Dritschel & Saravanan 1994), which permits the
general deformation of vortex core boundaries, including their filamentation and
fragmentation.

In § 2 we formulate the problem of vortex interactions in a rotating stratified fluid
in terms of the centroid and local moments for every vortex with a compact core
of uniform potential vorticity. In § 3 we consider the three-dimensional EM model
for two equal vertically-offset thin-core vortices (with details of the derivation in the
Appendix). In § 4, we analyse their stationary solutions, and in § 5 we analyse their
integrable non-stationary dynamics. In § 6 we compare the solutions of the EM model
with 3D CD numerical solutions for two identical thin-core vortices. Finally, in § 7
we summarize our findings and discuss the implications for non-singular potential
vorticity distributions.

2. A moment expansion for vortices with compact cores of uniform
potential vorticity

We start from the equation describing material conservation of QG potential
vorticity on horizontal fluid trajectories,

Dq

Dt
=
∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂x
= 0. (1)

For a uniformly rotating (i.e. f-plane), continuously stratified fluid, the non-
dimensional QG relations for the dynamic pressure, p, the geostrophic velocity,
u = (u, v), and the potential vorticity, q, are

u = −∂p
∂y
, v =

∂p

∂x
, (2)

q = ∇2p+
∂

∂z

(
1

N2

∂p

∂z

)
. (3)

Here we use local Cartesian coordinates, (x, y, z), where z is the vertical coordi-
nate in the direction of gravity and the axis of rotation. The underlying non-
dimensionalization is by the horizontal scale, L, velocity scale, U, time scale, L/U,
and vertical scale, H = Lf/No, where f is the Coriolis frequency, and No is the
characteristic Brunt–Väisälä frequency (hence, N2(z) is the non-dimensional vertical
gradient of the mean density profile).

By solving (3), the dynamic pressure can be expressed in terms of the Green’s
function G(ρ, z, z′), 2ρ = (x− x′)2 + (y − y′)2, of the boundary-value problem for this
three-dimensional elliptic operator:

p(x, y, z, t) = P (x, y, z) +

∫
G(ρ, z, z′)q(x′, y′, z′)dx′dy′dz′. (4)

Here P is a the pressure field associated with a geostrophic stationary flow with
uniform potential vorticity (i.e. a non-vortex background component).
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We consider M vortices with compact cores of uniform potential vorticity qk and
define the centroid for each vortex by(

Xk

Yk
Zk

)
=

1

Wk

∫
Wk

(
x
y
z

)
dx dy dz, (5)

where Wk is the volume of the kth vortex. The vertical position of the vortex, Zk , is
time independent within the QG approximation.

We introduce M local coordinate systems (x′k, y
′
k, z

′
k), relative to the horizontal

position of the kth centroid. For every vortex we decompose the velocity field u into
a near field uk and a far field U k . The near field is generated only by the kth vortex
and can be expressed from (2) and (4) in the form

uk(x, y, z, t) =

(
uk

vk

)
= qk

∫
Wk

Ĝ(ρ, z, z′)

(
−y + y′

x− x′

)
dx′dy′dz′, (6)

where

Ĝ(ρ, z, z′) =
∂G

∂ρ
. (7)

We write the far field as the sum of the background flow and the velocity field induced
by the remaining vortices,

U k(x, y, z, t) =

(
−∂yP
∂xP

)
+

M∑
α6=k

QαU kα, (8)

U kα =

(
Ukα

Vkα

)
=

1

Wα

∫
Wα

Ĝ(ρα, z, z
′)

(
−y + Yα + y′

x−Xα − x′

)
dx′dy′dz′, (9)

2ρα = (x−Xα − x′)2 + (y − Yα − y′)2, Qα = qαWα. (10)

The centroid motion is governed by the far field only,(
Ẋk

Ẏk

)
=

1

Wk

∫
Wk

U kdx
′dy′dz′, (11)

whereas both the near- and far-field components cause deformation and rotation of
the vortex.

Using an expansion of U k about the local vortex position, Rk = (Xk, Yk, Zk), gives

(Ẋk, Ẏk) =

∞∑
n=0

n∑
m=0

m∑
l=0

J
(l,m−l,n−m)
k

l!(m− l)!(n− m)!
∂lx∂

(m−l)
y ∂(n−m)

z U k|Rk
, (12)

where J (l,m,n)
k are the local geometrical moments of the vortex core region, namely

J
(l,m,n)
k =

1

Wk

∫
Wk

x′ly′mz′ndx′dy′dz′ (13)

with x′ = x−Xk , etc. The evolution equations for the local geometrical moments are
derived from (13) in the same manner as suggested by Melander et al. (1986) for the
two-dimensional Euler equations

J̇
(l,m,n)
k = J̇

(l,m,n)
∗k +

1

Wk

∫
Wk

x′(l−1)y′(m−1)z′n[mx′(Vk − Ẏk) + ly′(Uk − Ẋk)]dx
′dy′dz′, (14)
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Figure 2. Schematic drawing of two thin elliptical vortices: (a) side view; (b) top view.

where the second term describes the influence of the far field and J̇ (l,m,n)
∗k describes the

vortex self-interaction,

J̇
(l,m,n)
∗k =

1

Wk

∫
Wk

x′(l−1)y′(m−1)z′n(mx′vk + ly′uk)dx
′dy′dz′. (15)

The first local moments (e.g. J (1,0,0)) are zero because of the definition of the centroids
(5).

By using (6)–(9) with local expansions of U k and uk around Rk = (Xk, Yk, Zk), the
integrals in (14) and (15) are expressed in terms of the local geometrical moments.
Thus, (12)–(15) constitute an infinite system of ordinary differential equations.

For the remainder of this paper, for simplicity and analytical tractability, we
consider only vortices with a thin core, assuming

κk ≡
Wk

A
3/2
k

� 1, (16)

where Ak is the area of the horizontal section of the vortex at its central level
z = Zk (Ak is conserved in QG because the geostrophic horizontal velocities are
non-divergent). In this case we may neglect the effects of moments (13) with n > 1
because they are proportional to κnk .

The successive moments (14) can be shown to contribute to the far-field velocity
proportional to successive powers of the ratio of the vortex core size to the vortex
separation. Therefore, if we assume that all vortices are well separated, either hori-
zontally or vertically, we truncate the evolution equations, (12) and (14), at their first
non-trivial order to derive the second-order elliptic-moment model (EM) for thin-core
vortices in three dimensions (see the Appendix).

3. Evolution equations for two equal vortices
Using the EM model, we consider the interaction of two equal vortices which are

horizontally and vertically offset with centres at (X,Y , Z) and (−X,−Y , 0), hence with
a horizontal separation distance of R = 2(X2 + Y 2)1/2. Each vortex is characterized
by its volume-integrated potential vorticity, Q, horizontal moment of inertia, J (see
equation (A 7)), aspect ratio, λ (the square root of the ratio of major and minor axes
of the elliptical deformation of the vortex core), and the angle φ between the major
axis and x-direction (see figure 2).
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From (A 25)–(A 27) the centroid motion is described by(
Ẋ

Ẏ

)
= Q

{
RĜ+

µ

R
JΥ

[
λ+

1

λ
+

(
λ− 1

λ

)
cos(2φ− 2θ)

]}(
− sin θ

cos θ

)

+
2

R
QJΥ

(
λ− 1

λ

)(
sin(2φ− 3θ)

cos(2φ− 3θ)

)
, (17)

where the induced angular velocity Ĝ, strain rate Υ and coefficient µ are defined by

Ĝ =
1

4π(R2 + Z2)3/2
, Υ =

3R2

8π(R2 + Z2)5/2
, µ =

R2 − 4Z2

R2 + Z2
. (18)

Thus, for the evolution of R and θ = tan−1(Y /X) we obtain

Ṙ = 2Ẋ cos θ + 2Ẏ sin θ =
4

R
QJΥ

(
λ− 1

λ

)
sin(2φd), (19)

θ̇ =
2

R
(Ẏ cos θ − Ẋ sin θ)

= 2Q

{
Ĝ+

JΥ

R2

[
µ

(
λ+

1

λ

)
+ (µ+ 2)

(
λ− 1

λ

)
cos(2φd)

]}
, (20)

where the angle variables appear only in the combination φd ≡ φ − θ, which is the
angle between the major axis of the elliptical vortices and the line separating the
vortex centres. For the orientation and aspect ratio, equations (A 39)–(A 40) give

λ̇ = −2λQΥ sin(2φd), (21)

φ̇d = φ̇(i) − θ̇ + Q(Ĝ− Υ )− QΥ λ
2 + 1

λ2 − 1
cos(2φd). (22)

Thus, the relative rotation rate φ̇d depends on the sum of influences among the
self-rotation, φ̇(i), mutual rotation, θ̇, and the shear-induced rotation of one vortex by
the far-field velocity of the other, which has a local rotation component Q(Ĝ − Υ )
and a strain component described by the last term in (22).

Conservation of angular momentum T (see (A 47)) in EM follows from the combi-
nation of (19) and (21), which provides an integral relation that allows the elimination
of R:

R2 + 4J

(
λ+

1

λ

)
=

2T

Q
. (23)

Conservation of energy (A 48) gives another integral which can be used for eliminating
φd:

H

Q2
=

2H (i)

Q2
− G− J(Ĝ− Υ )

(
λ+

1

λ

)
+ JΥ

(
λ− 1

λ

)
cos 2φd = const. (24)

Here the Green’s function is G = −1/4π(R2 +Z2)1/2, and the self-energy H (i) depends
on λ only according to (A 57)–(A 58). Thereby, the system is reduced to an integrable
equation for λ only, as for 2D vortices (Melander et al. 1988). The system (20)–(23)
is autonomous; therefore, for a fixed value of the conserved quantities Z and T , the
trajectories in the (λ, 2φd)-plane are the level curves of H , (24).

We can simplify the equations above by an appropriate transformation based on
2J1/2 for distance, Q2/16πJ1/2 for energy, Q/16πJ3/2 for rotation rate, and 2JQ for
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angular momentum. Thus, the energy (24) becomes

h(λ, φd; σ, Z ) = h(i) +
2

(R2 + Z2)1/2

+
3

4(R2 + Z2)5/2

[
(R2 − 2Z2)

(
λ+

1

λ

)
+ R2

(
λ− 1

λ

)
cos 2φd

]
, (25)

where the self-energy is

h(i) ≡ 32π
J1/2H (i)

Q2
= χhe, (26)

and, by (A 57) and (A 67) for an ellipsoidal core,

χ = 16π
J

3/2
e κe

We

=
12

5
√

5
. (27)

The normalized self-rotation frequency is

ω(i) = χωe(λ, 0), (28)

where ωe is defined by (A 42) for an elliptical vortex. We will keep the same notation
for normalized distances R and Z; e.g. R2 is expressed from (23) as

R2 = σ2 + 2− ν, ν ≡ λ+
1

λ
, (29)

where σ2 + 2 = T/2QJ denotes the normalized angular momentum, i.e. σ ≡
(T/2QJ − 2)1/2, so that R = σ for circular vortices with λ = 1.

4. Stationary states
Stationary solutions are found only for φd = 0 (see (21)), where the separate

rotational influences in (22) balance in a configuration where the major axes are
parallel to the centre separation line. This corresponds to extrema of h, i.e. to zeros
of the slope dh/dλ along the direction φd = 0,

dh

dλ
= γ +

(
1− 1

λ2

)
[ω′ − ω(i)] = 0, (30)

where

γ =
3(σ2 + 2− ν)

2(σ2 + 2− ν + Z2)5/2
(31)

is the normalized strain rate and

ω′ =
1

2(σ2 + 2− ν + Z2)3/2
+

3(µ+ 1)λ2 − 3

4λ(σ2 + 2− ν + Z2)5/2
(32)

is the correction to rotational frequency due to mutual and local rotation. The
solutions of (30) are defined in the interval 1 < λ < λmax(σ), where

λmax = [2 + σ2 + σ(σ2 + 4)1/2]/2 (33)

corresponds to zero horizontal separation.
When λ = 1, this slope is always positive,

dh

dλ
= γ =

3σ2

2(σ2 + Z2)5/2
> 0, (34)
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A B C

Figure 3. Isolines of energy, h, plotted using polar coordinates (λ − 1, 2φd) for two identical thin
elliptical vortices (when Z = 1 and σ = 2.8). These are also phase-plane trajectories. Stationary
states A and C are local maxima and B is a saddle point.
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Figure 4. Stationary state A: (a) aspect ratio λ(σ, Z) and (b) horizontal separation R(σ, Z). The
bold line is λ = 1.7, which represents the regime boundaries σC (Z) when σ < 1.7 and σcr(Z) when
σ > 1.7.

while for λ → λmax(σ) the slope (30) becomes infinite only for vortices at the same
vertical level (Z = 0 and µ = 1) because γ → ∞. In this particular case, (30) has
two solutions, λ = λA(σ) and λ = λB(σ) > λA when σ > σcr as for two dimensions.
These solutions merge: λA = λB at σ = σcr . The critical value here is σcr ≈ 2.7 at
λ ≈ 1.7; both σcr and the corresponding horizontal distance R ≈ σcr are less in the
three-dimensional EM model than in the two-dimensional EM model where σcr ≈ 3.3.

The situation is different for vertically offset vortices with Z > 0. From (31)–(32)
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Figure 5. Same as figure 4, but for stationary state B. The upper part of the regime boundary σcr
for Z > Zcr is also shown as the bold line.
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Figure 6. Same as figure 5, but for stationary state C.

and (18), we see that γ → 0 and µ→ −4 when λ→ λmax, while

ω′ → 1

2Z3
− 3(3λ2 + 1)

4λZ5
. (35)

For any fixed λmax(σ), the maximum value of ω′ is achieved for Z2 = (15λ2
max+5)/2λmax,

so that

ω(i)(λmax) > ω′ (36)

for the normalized internal frequency (28). Therefore, the slope is negative in (30).
The change of the sign of the slope for any Z > 0 proves that at least one stationary
state always exists for vertically offset vortices.

There is only one stationary state if σ < σcr(Z), while there are three stationary
states when σ > σcr(Z). Besides the centre A and a saddle point B (which also exists
for two-dimensional vortices), there also exists another centre C with large aspect
ratio λC > λB > λA (figures 3–6). σcr(Z) has two branches. The states A and B merge
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at the boundary σ = σcr(Z), Z 6 Zcr , while the states B and C merge at the boundary
σ = σcr(Z), Z > Zcr . All three of them merge at σ = σcr(Zcr) ≈ 1.7, Z = Zcr ≈ 1.3.

The centre C, characterized by large horizontal aspect ratio (λC > 1.7), exists when
σ > σC(Z) (figure 6). The critical value is either σC(Z) = σcr(Z), for Z > Zcr , or
σC(Z) < σcr(Z), for Z < Zcr . The aspect ratio in state C, λC , increases when the
vertical separation Z decreases with fixed σ and when σ increases with fixed Z . When
Z � σ, the vortices are strongly elongated: λC ≈ σ2 for large σ (figure 6).

On the other hand, when σ < σC(Z), the only stationary state is A, and it has a
moderate aspect ratio λA < 1.7 for both remote and nearly aligned vortices (figure 4).
This is because for Z > 0 the strain rate decreases when R → 0, and λ → 1, unlike
for two-dimensional vortices. Indeed, when σ � Z , we can show from (30) and (36)
that

λ2
A − 1 ≈ 3σ2

2Z5ω
(i)
0 − Z2 + 6

� 1, (37)

where ω(i)
0 ≡ χωe(1, 0) ≈ 0.2 is the internal rotational frequency of a thin circular

vortex.
As seen in figures 4–6, for any λ > 1 the stationary solution σ(Z, λ) has an arch

shape in (σ, Z) with two branches. At the outer branch with larger σ, the strain rate γ
in (30) is mainly balanced by the self-rotation ω(i), while at inner branch with smaller
σ, the strain rate is mainly balanced by mutual and local rotation ω′. Both ω(i) and ω′

are important to balance the strain rate at the upper part of the arch. For moderate
λ < 1.7, both branches belong to stationary state A (figure 4), while for λ > 1.7 the
outer branch belongs to the unstable state B (figure 5) and the inner branch belongs
to the state C (figure 6).

The most important result of this analysis is the non-existence of state A with
moderate aspect ratio when σC(Z) < σ < σcr(Z) and Z < Zcr (figure 4). Only a state
C with large aspect ratio exists in this regime.

5. Transient evolution
The problem of two identical vortices in the EM model with given vertical separa-

tion Z and angular momentum σ2 + 2 is an integrable Hamiltonian dynamics with
a single degree of freedom. Thus, we can describe the general transient evolution in
movement along the isolines of h as a function of the polar coordinates (λ− 1, 2φd);
thus, these isolines are also the phase-space trajectories (figure 3). The origin in this
plane represents a circular vortex (λ = 1). As we move away from the origin, λ
increases and R decreases in order to preserve angular momentum. The horizontal
separation reaches zero on a circle of radius λ = λmax. Figure 3 is reflection sym-
metric between top and bottom, corresponding to the time-reversibility of the system
(21)–(22).

For vortices at the same vertical level (Z = 0), the structure of h in three dimen-
sions is similar to the two-dimensional case analysed by Melander et al. (1988). As
mentioned in § 4, a pair of stable and unstable stationary solutions exist for remote
vortices when σ > σcr . The stable state corresponds to a centre A and non-stable
state corresponds to a saddle point B with larger aspect ratio λB > λA. Inside the
separatrix, starting and ending at saddle point B, there are closed orbits around the
centre A, describing co-rotating pulsating vortices. All orbits outside this separatrix
are open and lead to centroid collapse at the point (λ = λmax, φd = −π/4), which
has been interpreted as the irreversible tendency towards merger for sufficiently close
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vortices in non-singular solutions. The minimum value σ = σcr corresponds to one
unstable stationary state, and for σ < σcr all trajectories end at the point of collapse.

There is no collapse for vertically offset vortices (Z > 0) because at least one
stationary state always exists and all orbits are closed. Along an orbit not surrounding
the origin, φd oscillates around zero, corresponding to a nutation of elliptical vortices
in the co-rotating frame. On orbits surrounding the origin, φd increases steadily, so
that vortices rotate in the co-rotating frame.

Although elliptical vortices can have arbitrarily large λ(t), such highly deformed
shapes are unlikely to be stable in non-singular QG dynamics, where the non-
conservative behaviours of filamentation and fragmentation of vortices are likely.
Thus, we interpret large λ values as likely situations for significant potential vorticity
dissipation and reconnection behaviours outside the EM model in non-singular QG
dynamics, possibly indicating an irreversible tendency towards alignment. This, of
course, must be confirmed (see § 6).

Consider the h phase plane for the three regimes discussed in § 4:
(a) σ > σcr(Z). This is most complicated and interesting case. Besides the centre

C, we have a pair of stable and unstable stationary states which correspond to the
previously considered centre A and saddle point B that exist for vortices at the same
level; therefore, λA < λB < λC (figure 3). Inside the separatrix, starting and ending at
saddle point B, and surrounding the centre A with moderate aspect ratio, all orbits
are closed around the centre A, so that λ < λB . Outside this separatrix, all orbits are
closed around either both centres A and C or only centre C with large λ. Instead of
tending to the collapse point as for vortices at the same level, all trajectories intersect
the φd = 0 line with λ > λC . Here the horizontal distance between vortices decreases
to a small value while they become strongly elongated: λC ≈ σ2 � 1 when Z � σ (as
mentioned above).

To characterize the conditions that distinguish whether λ must become large, we
focus on the critical separatrix determined by the value of h (27) at the saddle point
B, namely

hB(σ, Z) = h(λB, 0; σ, Z), (38)

where λB(σ, Z) denotes the aspect ratio of state B. The region of the phase plane
inside the separatrix is then described by

h(λ, 2φd; σ, Z) > hB(σ, Z), λ < λB(σ, Z). (39)

Hence, when σ > σcr(Z), strong deformation will occur if and only if either of the
following conditions is satisfied:

h < hB(σ, Z) or λ > λB(σ, Z). (40)

This deformation condition is similar to the merger condition in two dimensions (i.e.
(31) in Melander et al. 1988) except when σ < σcr .

(b) σC(Z) < σ < σcr(Z) and Z < Zcr . All orbits are closed around the only
stationary state C, and the solutions reach a large λ value (> λC) on their orbit (see
figure 6 a).

(c) σ < σC(Z). All orbits are closed around the stationary state A with moderate
aspect ratio. Starting from circular vortices, λ may only slightly exceed 2 (figure 4 a).

An overview of this deformation behaviour is given in figure 7, which shows the
maximum aspect ratio along an orbit for initially circular vortices with separation
distances (R, Z). We see that large deformations occur only in a region of finite Z
and intermediate R, which is close to the region where state A does not exist (figure
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Figure 7. Maximum of the horizontal aspect ratio over the oscillation period for initially circular
vortices, as a function of initial separation distances, R and Z . The line R = Rcr(Z) is defined by
the criterion maxt [λ] = 2.

4 a). We define a double-valued curve R = Rcr(Z) which separates solutions with weak
deformation from those with strong deformation, by the criterion maxt[λ] = 2.

6. Contour dynamics of thin vortices
In this section we examine the reliability of the EM model by comparison with CD

solutions of the QG equations (1)–(3), while retaining the assumption of thinness,
κ � 1. We use a multi-layer numerical model of CD (Dritschel & Saravanan, 1994)
with N(z) = 1 and total fluid depth D = 4 (which we have confirmed is large enough
compared to Z so that the effects of the rigid boundary conditions at the surface
and bottom in the model are small). Initially the vortices each have a circular core of
uniform potential vorticity with radius rc = 1 in two vertically separated layers. Thus,
if the total number of layers is n and a vortex core occupies one of n layers, the core
thickness is κ = D/n � 1. The calculations were done with both n = 25 and n = 51
to confirm the insensitivity to the particular value of κ, provided that it is small.

Figure 8 is a comparison of the regime boundaries, R = Rcr(Z), for EM and CD
solutions. The deformation criterion required for CD is a more general one of vortex
boundary stretching and filamentation than in the EM model where λ(t) is the only
available measure; for CD the appropriate measure is the vortex boundary length S(t)
(normalized such that S(0) = 1 for the circle). There is, of course, some arbitrariness in
choosing the threshold values for these deformation measures, and we need not expect
that their correspondences be close in all circumstances. Nevertheless, in both models
there are transitions between weakly and strongly deformed transient solutions near
the curves associated with the stationary-state transitions, σC and σcr for Z < Zcr .
However, the closeness of their correspondence varies along the transition boundary,
so we will consider in turn each of the outer, inner, and upper boundary segments.

6.1. Outer boundary

First, we consider the outer boundary segment of R = Rcr(Z), demarcated on figure 8
as pairs of CD solutions spanning the boundary at Z = 0.64, 0.32, and 0. These pairs
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Figure 8. Regime boundaries between weakly and strongly deformed shapes in their subsequent
evolution for initially circular vortices, as a function of initial separation distances, R and Z . The
solid line is the line maxt [λ] = 2 for thin elliptical vortices (from figure 7), and the circles and
crosses indicate CD solutions with maxt [S] < and > 1.2, respectively.
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Figure 9. λ(t) in CD for two of the initial (R, Z) values shown in figure 8:
(a) (2.60, 0.64); (b) (2.80, 0.64).

show strong differences in λ(t) for close initial conditions near Rcr (figure 9), as well
as in the S(t) criterion that we have used to identify the boundary. For this segment
the boundary is at somewhat larger R for CD solutions than for EM solutions, and
this difference increases as Z decreases; however, the general shape of the boundary
is similar in the two models. When the shape deformations are strong (i.e. in the
solutions marked with a cross), the aspect ratio dramatically increases with time,
while the horizontal separation for at least some parts of the vortex cores decreases,
indicating a tendency towards amalgamation of the potential vorticity originally in
the vortex cores. For solutions with smaller deformations (i.e. marked by a circle),
the vortex pairs co-rotate with pulsating aspect ratio λ < 2.5; this corresponds to a
phase-plane trajectory around the stationary state A.

For Z = 0.64 and R < Rcr , after a strong early elongation, the vortex cores
split into two pairs, with only a modest amount of accompanying potential-vorticity
filamentation (figure 10 a). The inner members of each pair move into a configuration
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Figure 10. A horizontal projection of the vortex shapes in CD solutions near the outer regime
boundary for (a) (R, Z) = (2.60, 0.64); (b) (R, Z) = (3.00, 0.32); (c) (R, Z) = (3.10, 0.00).

of near alignment, while the outer members move outward and continue to co-rotate
as remote vortices. For Z = 0.32, strong core deformations again lead to splitting
of the vortices into two pairs, with both larger and smaller horizontal separations
than initially (figure 10 b). The inner pair is very strongly deformed here; although
there is a suggestion of some tendency towards reformation as a nearly aligned
vortex, this type of ‘reconnection’ process is difficult to follow very far towards
completion in a CD solution. For vortices centred at the same level (Z = 0), there
is a tendency towards amalgamation by winding themselves around each other, as in
two-dimensional merger (figure 10 c). In all of these CD examples for R < Rcr , there
is strong evidence in support of non-conservative effects through ‘instability’ of the
large elliptical deformations that arise in the EM solutions, as well as a subsequent
evolution towards amalgamation, i.e. alignment and/or merger.

6.2. Inner boundary

For vertically separated vortices near the inner boundary Rcr , we have calculated pairs
of CD solutions at Z = 0.64, 0.32, and 0.16 in figure 8 (we avoid Z → 0 since the
approximation of thin vortex cores is not meaningful there). Here the boundary for
CD solutions lies at somewhat smaller R than for EM solutions, but again it has a
roughly similar shape. The CD solutions for R > Rcr do not develop large λ values,
in contrast to the behaviour near the outer boundary (figure 10). Rather they exhibit
a strong growth of boundary length S(t) leading to filamentation but with all the
detached fragments remaining close to the original range of horizontal separation
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Figure 11. A horizontal projection of vortex shapes in CD solutions near the inner regime
boundary for (a) (R, Z) = (0.50, 0.32); (b) (R, Z) = (0.60, 0.32); (c) (R, Z) = (0.80, 0.64).

distances. The greater part of the vortex core remains fairly close to a circular shape,
with local bulges or kinks developing as the filamentation sites.

For Z = 0.32 and R < Rcr , the bulge does not proceed to filamentation and
instead evolves as a dispersive wave along the vortex boundary (figure 11 a). For
the same Z and R > Rcr , the bulges develop into kinks and filaments that move
outward horizontally, and the horizontal distance between the surviving vortex cores
decreases somewhat, indicating a progression towards greater alignment (figure 11 b).
For Z = 0.64 and R > Rcr , there is greater growth in λ, more filamentation, the
appearance of a pair of small vortices at large R, and a somewhat greater decrease in
R between the primary vortex cores (figure 11 c). Overall, the amount of deformation,
non-conservation of core vorticity, and relative change in R are less near the inner
boundary than near the outer one, since the vortices start less far from an aligned
configuration.

6.3. Upper boundary

Finally we consider pairs of initially circular vortices at Z = 0.8 and 0.96 for several
R values (figure 8). These pairs again straddle the boundary between weakly and
strongly deformed vortex evolutions. This portion of the boundary lies at significantly
smaller Z than for EM solutions. Part of this difference in boundary locations is due
to the difference in the defining criterion for the boundary: the ‘stable’ CD solutions
here (the circles along the upper boundary) are able to sustain λ > 2 without excessive
growth in boundary length nor any filamentation, which is an indication that our two
threshold criteria involving λ and S are not universally compatible. Nevertheless, a
CD solution R = 1.6 and Z = 1.28 has maxt [λ(t)]) = 1.5, and thus it lies within the
weakly deformed regime well below the Z ≈ 1.4 for the EM model.

This difference between the EM prediction and CD also can be partly understood
by analysing the stationary solutions of (22). From (30), these solutions can be written
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Figure 12. Horizontal strain field in (r, z) for point (dots) and circular-core (lines) vortices. The
core thickness is 0.16, as in the CD solutions with n = 25.

in the form

λ2 − 1

λ2
=

γ(R, Z)

ω(i)(λ)− ω′(λ, R, Z)
, (41)

where the right-hand side is the ratio of the strain rate (31) and the difference between
the self-rotation rate (28) and the combination of mutual and local rotation rates
(32). In the EM model, the strain rate is calculated as the far field of a point vortex
while the mutual rotation rate includes a correction due to finite size of the vortex
core. However, isolines of the strain field for a thin-core vortex deviate significantly
from those for a point vortex, as shown in figure 12 for a circular core shape. In
particular, the strain field for a finite-core vortex (as it is calculated in CD) is smaller
in the vicinity of the upper boundary in figure 8, and this allows weakly deformed
evolutions to occur at smaller Z values in CD than in EM.

7. Discussion
We have investigated the three-dimensional interaction of a close pair of like-sign

vortices using two differently singularized models of the quasi-geostrophic equations
(QG). We first derived and analysed an analytically tractable conservative (Hamilto-
nian), elliptical-moment (EM) model for thin-core vortices, which captures the strong
elongation of vortex cores in response to horizontal straining, and we interpret this
as an early evolutionary stage towards merger and alignment. This interpretation is
strengthened by comparison with weakly dissipative numerical solutions of a thin
contour-dynamics (CD) model, which both have a similar regime boundary to EM
separating weakly and strongly deformed solutions and can reliably be followed
further in the complexity of their deformations along the path towards merger and
alignment.

Our principal conclusions are the following:
(i) The merger interaction of two vortices at the same vertical level is qualitatively

similar to the that of two-dimensional vortices, as described by Melander et al.
(1988). Stable co-rotating stationary states exist for sufficiently well separated vortices
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but not for close ones, and initially close circular vortices exhibit strong elongation
and decreasing horizontal separation (as required by conservation of total angular
momentum).

(ii) For vertically separated vortices, there is a critical value of their vertical
separation, Z = Zcr , above which a stable stationary state exists always with moderate
horizontal aspect ratio λ. In this regime all initially circular vortices with finite
horizontal separation, R 6= 0, display a weak oscillation in λ while co-rotating.

(iii) For 0 < Z < Zcr , the interaction depends on σ (related to the normalized
angular momentum of the vortex pair by T/2JQ = σ2 + 2; see (23) and (A 47).
For σ < σC(Z) < σcr(Z), the only stationary state has moderate λ which approaches
its minimum value λ = 1 when σ → 0 for exactly aligned vortices. For σC(Z) < σ <
σcr(Z), the one stationary state has large λ and initially circular vortices exhibit strong
core deformation and decreasing horizontal separation R through non-conservative
filamentation or splitting. For σcr(Z) < σ, there are two stable stationary states, only
one of which has weak core deformations. When there exists a weakly deformed
stationary state, initially circular vortices display a weak oscillation in λ while co-
rotating.

(iv) Both the EM and CD models show qualitatively similar regime boundaries
as described above. In particular, there is a fairly close correspondence between the
occurrence of strong core elongation in the EM solutions and significant filamentation
and splitting in the CD solutions. The greatest inaccuracy of the EM model occurs
in the approximation for the strain field for intermediate vertical separation distances
between vortices, Z .

This paper takes some steps towards a theoretical understanding of the three-
dimensional merger and alignment processes in a rotating stratified fluid. For reasons
of mathematical simplicity, we have considered only the symmetric interaction of
two vertically offset vortices with a thin core of uniform potential vorticity. We have
found that the mutual strain field among the vortices cannot be balanced by co-
rotation in a weakly elongated stationary state for a certain class of neighbouring,
but substantially non-aligned, vortex configurations, and that such configurations
will rapidly evolve towards a more aligned configuration through significantly non-
conservative reorganizations of the potential vorticity field. Further investigation is
required to test the aptness of these conclusions for non-singular vortices with finite
core thickness; however, preliminary solutions indicate they are qualitatively apt, and
we hope to report further on this in the future.

The stationary states and evolutionary tendencies shown here indicate that like-
sign close vortices are usually likely to merge or align. This is consistent with the
potential-vorticity amalgamation events seen in freely evolving geostrophic turbulence
(McWilliams et al. 1994). A minor discrepancy, perhaps, is that a pair of vertically
separated nearly aligned vortices in the models analysed here have no further tendency
towards the complete alignment which seems to be approached in the turbulent
solutions; we hypothesize that the latter requires an additional strain field (e.g. due
to the moving remote vortices in turbulence) beyond that which occurs during a pair
interaction.

We can also speculate that the alignment process is relevant to a wider range of flow
structures than just the vortices investigated here. It allows for the growth of vertical
correlation between potential vorticity patches located at different vertical levels, even
in the absence of an advective or diffusive mechanism to vertically transport the
potential vorticity, as in QG. This process, therefore, may be an important cause of
the large vertical correlations commonly observed for temperature, velocity, etc.
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Appendix. The elliptic-moment model for thin-core vortices
A.1 The evolution equations

For thin-core vortices we reduce (12) to

(Ẋk, Ẏ k) =

∞∑
m=0

m∑
l=0

J
(l,m−l,0)
k

l!(m− l)!∂
l
x∂

(m−l)
y U k|Rk , (A 1)

By omitting the third and higher horizontal moments in (14) and (A 1), we obtain
truncated evolution equations similar to the second-order two-dimensional moment
model considered by Melander et al. (1986):

J
(0,0,0)
k = 1, (A 2)(

Ẋk

Ẏ k

)
= [1 + 1

2
(J (2,0,0)
k ∂2

x + 2J (1,1,0)
k ∂x∂y + J

(0,2,0)
k ∂2

y)]U k|Rk , (A 3)

J̇
(2,0,0)
k = J̇

(2,0,0)
∗k + 2[J (1,1,0)

k ∂yUk + J
(2,0,0)
k ∂xUk]Rk , (A 4)

J̇
(0,2,0)
k = J̇

(0,2,0)
∗k + 2[J (1,1,0)

k ∂xVk + J
(0,2,0)
k ∂yVk]Rk , (A 5)

J̇
(1,1,0)
k = J̇

(1,1,0)
∗k + [J (2,0,0)

k ∂xVk + J
(0,2,0)
k ∂yUk]Rk . (A 6)

Here the far-field velocity and its derivatives ∂lx∂
m
yU k|Rk are calculated at the centroid

Rk = (Xk, Yk, Zk).
For an elliptical vortex the volume conservation (A 2) follows from the system

(A 4)–(A 6) in the same manner as shown for two dimensions by Melander et al.
(1986):

J
(2,0,0)
k J

(0,2,0)
k − J (1,1,0)

k J
(1,1,0)
k = J2

k = const, (A 7)

where Jk = const is the horizontal moment of inertia for a circular core.
Further we introduce the following non-dimensional notation for the second mo-

ments:

J
(2,0,0)
k = Jk

νk + ζk

2
, J

(0,2,0)
k = Jk

νk − ζk
2

, J
(1,1,0)
k = Jk

ηk

2
, (A 8)

where νk and ζk are the sum and difference of the main moments. Correspondingly,
(A 7) takes the form

ν2
k − ζ2

k − η2
k = 4. (A 9)

The second horizontal moments define an equivalent ellipse with horizontal semi-axes
ak, bk and the angle φ between the major axis and x-direction, so that

νk = λk +
1

λk
, ζk =

(
λk −

1

λk

)
cos 2φk, ηk =

(
λk −

1

λk

)
sin 2φk (A 10)

where λk = ak/bk is the aspect ratio. We will refer to this level of truncation as the
elliptical-moment model (EM).

Thus, in the EM model the evolution of every thin vortex is also described by four
parameters as for two-dimensional vortices: the centroid coordinates (Xk, Yk), the
aspect ratio λk and the angle φk .
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A.2. The far-field expansion

The far-field velocity according to (9) is represented by the sum of the external flow
and normalized velocity U kα = (−∂yΨkα, ∂xΨkα), where the normalized streamfunction
of the far field is

Ψkα(x, y, Zk) =
1

Wα

∫
Wα

G(ρα, Zk, Zα)dx
′dy′dz′. (A 11)

In stratified fluid for constant N = 1 and unbounded domain, the Green’s function
G depends only on the three-dimensional distance R,

G = − 1

4πR , R
2 ≡ 2ρα + (Zk − Zα)2. (A 12)

For remote vortices we represent R2 in the form

R2 = R2
α − 2rαr

′ cos(θα − θ′) + r′2, (A 13)

where

R2
α = r2

α + (Zk − Zα)2,

(
x−Xα

y − Yα

)
= rα

(
cos θα
sin θα

)
,

(
x′

y′

)
= r′

(
cos θ′

sin θ′

)
. (A 14)

Assuming |R2 −R2
α| � R2

α, i.e. all vortex cores are well separated, either horizontally
or vertically, we expand G as follows:

G(R) = G(Rα) + Ĝ(Rα)[
1
2
r′2 − rαr′ cos(θα − θ′)]− Υαr′2 cos2(θα − θ′) + ... . (A 15)

Here we introduce

Ĝ(Rα) ≡
∂G

∂ρ
=

1

4πR3
α

, Υα ≡ −ρα
∂Ĝ

∂ρ
=

3r2
α

8πR5
α

. (A 16)

As we shall see below, Ĝ and Υ characterize the angular velocity and the strain rate
induced by the point geostrophic vortex with infinitesimal core size.

Inserting (A 15) into (A 11), we obtain an approximate expression

Ψkα ≈ G(Rα) +
Jα

2
Ψ ′kα. (A 17)

The first term in (A 17) describes the far field of the point vortex, while the other
term, being proportional to Jα, represent effects of finite horizontal size of the vortex
core:

Ψ ′kα = Ωανα − Υα(ζα cos 2θα + ηα sin 2θα)

= Ωα

(
λα +

1

λα

)
− Υα

(
λα −

1

λα

)
cos(2θα − 2φα), (A 18)

where Ωα characterizes the induced rotational frequency

Ωα ≡ Ĝ(Rα)− Υα =
2(z − Zα)2 − r2

α

8πR5
α

, (A 19)

which becomes negative for rα >
√

2|z − Zα|.
In this expansion we keep the general notation for G, Ĝ, Υ , Ω for a comparison with

the two-dimensional flow when G does not depend on z (§A.6).
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A.3. Centroid motion

The centroid motion according to (A 3) is described by the sum of the normalized
far-field velocity calculated by differentiating (A 17)

U kα =
∂Ψkα

∂rα

(
− sin θα

cos θα

)
− 1

rα

∂Ψkα

∂θα

(
cos θα
sin θα

)
(A 20)

and the second derivatives of U kα at the centroid, which are calculated using the
point-vortex velocity

U 0
kα = rαĜ(Rα)

(
− sin θα
cos θα

)
. (A 21)

To calculate the far-field velocity we rewrite the correction of the normalized far-field
streamfunction (A 17) in the form

Ψ ′kα = 1
2
Ωα(να + ζα cos 2θα + ηα sin 2θα)− 1

2
Ĝ(Rα)(ζα cos 2θα + ηα sin 2θα). (A 22)

Inserting (A 22) into (A 20), we obtain an approximate expression for a correction of
the normalized velocity induced by the αth vortex within the kth vortex,

U ′kα =
rα

2

∂Ωα
∂ρα

(να + ζα cos 2θα + ηα sin 2θα)

(
− sin θα

cos θα

)
+
Υα

rα

(
−ζα sin 3θα + ηα cos 3θα
ζα cos 3θα + ηα sin 3θα

)
.

(A 23)

The second derivatives of U k in (A 3) at the centroid are calculated using the point
vortex velocity (A 21)[

νk

4
(∂2
x + ∂2

y) +
ζk

4
(∂2
x − ∂2

y) +
ηk

2
∂x∂y

]
U 0
kα

=
rkα

2

∂Ωα
∂ρ

(νk + ζk cos 2θkα + ηk sin 2θkα)

(
− sin θkα

cos θkα

)
+
Υkα

rkα

(
−ζk sin 3θkα + ηk cos 3θkα
ζk cos 3θkα + ηk sin 3θkα

)
. (A 24)

Thus, summing (A 21), (A 23), and (A 24), for the centroid motion we obtain(
Ẋk

Ẏ k

)
=

M∑
α6=k

Qα[(1 + JαBα + JkBk)U
0
kα +

Υkα

Rkα
(JαV α + JkV k)], (A 25)

where R2
kα = (Xα −Xk)

2 + (Yα − Yk)2 while Bk and V k are expressed as follows

Bα =
1

2Ĝ

∂Ω

∂ρ

[
λα +

1

λα
+

(
λα −

1

λα

)
cos(2θkα − 2φα)

]
, (A 26)

V α =

(
λα −

1

λα

)(
− sin(3θkα − 2φα)

cos(3θkα − 2φα)

)
. (A 27)

Inserting expressions (A 16) and (A 19) into (A 26)–(A 27), finally for the centroid
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motion of vertically offset geostrophic vortices we obtain(
Ẋk

Ẏ k

)
=

M∑
α6=k

Qαrkα

4πR3
kα

(
− sin θkα

cos θkα

)

+

M∑
α6=k

3Qαrkα

16πR7
kα

[r2
kα − 4(Zk − Zα)2]

{
Aα

(
λα +

1

λα

)
+ Ak

(
λk +

1

λk

)
+Aα

(
λα −

1

λα

)
cos(2θkα − 2φα) + Ak

(
λk −

1

λk

)
cos(2θkα − 2φk)

}(
− sin θkα

cos θkα

)
+

M∑
α6=k

3Qαrkα

8πR5
kα

[
Aα

(
λα−

1

λα

)(
− sin(3θkα − 2φα)

cos(3θkα − 2φα)

)
+Ak

(
λk−

1

λk

)(
− sin(3θkα − 2φk)

cos(3θkα − φk)

)]
.

(A 28)

A.4. Core rotation and deformation

To describe the deformation of the core we use representations of the horizontal
moments J (2,0,0)

k and J
(0,2,0)
k in terms of their sum and difference following (A 8), so

that the evolution equations (A 4)–(A 6) become

ν̇k = Γ1ηk + Γ2ζk, ζ̇k = −Ω̂ηk + Γ2νk, η̇k = Ω̂ζk + Γ1νk, (A 29)

where Ω̂ is defined by the self-interaction rotational frequency φ̇(i) and the far-field
vorticity at the centre of the vortex

Ω̂ = 2φ̇(i) + (∂xVk)|Rk − (∂yUk)|Rk , (A 30)

while Γ1 and Γ2 describe the deformation of the vortex induced by remote vortices

Γ1 = (∂xVk)|Rk + (∂yUk)|Rk , Γ2 = (∂xUk)|Rk − (∂yVk)|Rk . (A 31)

In terms of the horizontal aspect ratio λk and the angle φk , using (A 9) we rewrite
(A 29) in the form

λ̇k

λk
= Γ1 sin 2φk + Γ2 cos 2φk, (A 32)

2φ̇k = Ω̂ +
λ2
k + 1

λk − 1
(Γ1 cos 2φk − Γ2 sin 2φk). (A 33)

The shear and strain produced by the αth vortex on the kth vortex in (A 29) are
described by the normalized point-vortex velocity (A 21)

∂xUkα = −∂yVkα = Υkα sin 2θkα, (A 34)

∂xVkα = Ωkα − Υkα cos 2θkα, ∂yUkα = −Ωkα − Υkα cos 2θkα, (A 35)

∂zUkα = −2(Zk − Zα)
rkα

Υkα sin θkα, ∂zVkα =
2(Zk − Zα)

rkα
Υkα cos θkα, (A 36)

where the strain rate Υkα and the induced rotational frequency Ωkα are defined by
(A 16) and (A 19), correspondingly.
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Inserting (A 34)–(A 36) into (A 30)–(A 31), we obtain

Ω̂ = φ̇(i) + 2

M∑
α6=k

QαΩkα, (A 37)

Γ1 = 2

M∑
α6=k

QαΥkα cos 2θkα, Γ2 = 2

M∑
α6=k

QαΥkα sin 2θkα. (A 38)

Thus, using (A 37)–(A 38) in (A 32)–(A 33), we obtain

λ̇k = 2λk

M∑
α6=k

QαΥkα sin(2θkα − 2φk), (A 39)

φ̇k = φ̇
(i)
k +

M∑
α6=k

Qα

(
Ωkα −

λ2
k + 1

λ2
k − 1

Υkα cos(2θkα − 2φk)

)
, (A 40)

For three-dimensional geostrophic vortices at the same level Zk = Zα and Rkα =
Rkα. We see from (A 16) that (Υkα = 3Ĝkα/2 = 3/8πR3

kα), and according to (A 19),

the induced rotational frequency Ωkα = −Ĝkα/2 is negative. Thus, (A 39)–(A 40)
correspond to formula (22) in the paper by Zhmur & Shchepetkin (1992) describing
the internal frequency of rotation of an ellipsoidal core around the vertical axis as

φ̇(i) = qκeωe, ωe(λ, κe) =
1

2

∫ ∞
0

ξdξ

[(λ+ ξ)(λ−1 + ξ)]3/2(κ2
e + ξ)1/2

, (A 41)

where κe = ce/(aebe)
1/2 is dimensionless thickness of the ellipsoidal core with the

semi-axes ae, be, ce. In the limit of a thin core (κ2
e � 1), ωe is expressed through

complete elliptic integrals of the first kind K and the second kind E

ωe(λ, 0) =

∫ ∞
0

ξ1/2dξ

[(λ+ ξ)(λ−1 + ξ)]3/2
=

(1− ε2)3/4

ε2
[2D(ε)−K(ε)], (A 42)

where D = (K− E)/ε2 and ε2 = 1− 1/λ2.
The set of equations (A 25)–(A 27), (A 39)–(A 42) describes the evolution of verti-

cally offset elliptical geostrophic vortices.

A.5 Conserved quantities

Like the two-dimensional Euler equations, the three-dimensional QG equations (1)–
(3) are known to conserve the following: any analytic functional of potential vorticity
Π(q),

d

dt

∫
Π(q)dx dy dz = 0; (A 43)

global centroid,

d

dt

∫
q

(
x
y
z

)
dx dy dz =

∫
q

(−∂yp
∂xp
0

)
dx dy dz = 0; (A 44)

angular momentum,

dT

dt
≡ d

dt

∫
q(x2 + y2)dx dy dz = 2

∫
q(−x∂yp+ y∂xp)dx dy dz = 0; (A 45)
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and sum of kinetic and potential energy,

dH

dt
≡ 1

2

d

dt

∫
[(∂xp)

2 + (∂yp)
2 +

1

N2
(∂zp)

2]dx dy dz = 0. (A 46)

For vortices with thin compact cores of uniform potential vorticity, (A 43) corresponds
to area conservation at the horizontal section. Both global centroid velocity (A 44)
and the rate of change of angular momentum (A 45) vanish because the dynamic
pressure (4) is an integral over a kernel G with odd horizontal symmetry (without
the external flow P = 0). The angular momentum is expressed through the second
moments:

T =

∫
q(x2 + y2)dx dy dz =

M∑
k=1

qk

∫
Wk

[X2
k + Y 2

k + 2x′Xk + y′Yk + x′2 + y′2]dx′dy′dz′

=

M∑
k=1

Qk

[
X2
k + Y 2

k + Jk

(
λk +

1

λk

)]
. (A 47)

Here the terms proportional to X2
k + Y 2

k are the same as in the point-vortex model
while another term proportional to Jk is the correction due to finite horizontal size
of the vortex core.

Integrating (A 46) by parts and assuming the dynamic pressure tends to zero at
infinity, we express geostrophic energy in the form

H ≡ −1

2

∫
qp dx dy dz = HC +HI +

M∑
k=1

H
(i)
k , (A 48)

where HC +HI is the interaction energy due to a far field U k = (−∂yΨk, ∂xΨk):

HC +HI = −
M∑
k=1

qk

2

∫
Wk

Ψk dx dy dz, (A 49)

while the last term in (A 48) is the self-energy of a near field U k = (−∂yψk, ∂xψk):

H
(i)
k = −qk

2

∫
Wk

ψk dx dy dz. (A 50)

Note, that the energy of localized three-dimensional geostrophic vortices in an un-
bounded domain is finite in contrast to two dimensions.

The interaction energy is obtained by expanding the far field and truncating after
the second-order moments as in (A 13)–(A 18)

HC +HI = −Qk
2

M∑
α6=k

Qα

∫
Wα

Ψkαdx
′dy′dz′

= −Qk
2

M∑
α6=k

Qα

{
1 +

Jk

4
[νk(∂

2
x + ∂2

y) + ζk(∂
2
x − ∂2

y) + ηk∂x∂y]

}
Ψkα|Rk , (A 51)

where Ψkα is described by (A 17)–(A 18).
Thus, the interaction energy consists of HC , defined only by the inter-centroidal
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distances (and is identical with the interaction energy of M geostrophic point vortices)

HC = −
M∑
k=1

M∑
α6=k

QkQα

2
G(Rkα), (A 52)

and HI which represents the second-order correction due to finite size of the core

HI = −
M∑
k=1

M∑
α6=k

QkQα

4
Ωkα

[
Jk

(
λk +

1

λk

)
+ Jα

(
λα +

1

λα

)]

+

M∑
k=1

M∑
α6=k

QkQα

4
Υkα

[
Jk

(
λk −

1

λk

)
cos(2θkα − 2φk) + Jα

(
λα −

1

λα

)
cos(2θkα − 2φα)

]
.

(A 53)
The first part of HI is defined by the induced rotational frequency Ω while the other
parts of HI are defined by the strain rate Υ . In two dimensions the first part of HI

vanishes because Ω = 0, so that (A 52)–(A 53) correspond to expressions (28) in the
paper by Melander et al. (1986).

From (A 52)–(A 53) in agreement with (A 25)–(A 27) we find

QkẎ k = −∂Xk (HC +HI ), QkẊk = ∂Yk (HC +HI ) (A 54)

(similar to the Hamiltonian form of the point-vortex model).
For the other variables in agreement with (A 39)–(A 40) we find

QkJk(λ
2
k − 1)

λ̇k

2λ2
k

= ∂φkHI , (A 55)

QkJk(λ
2
k − 1)

φ̇k

2λ2
k

= −∂λk (HI +H
(i)
k ), (A 56)

assuming that the self-energy of an elliptical vortex does not depend on its orientation,
so that λ̇(i)

k = 0. The interaction energy and self-energy for geostrophic vortices with
an ellipsoidal core have been calculated by Zhmur & Pankratov (1990):

H (i) =
q2WeJeκe

2
he(λ, κe), he =

∫ ∞
0

dξ

[(λ+ ξ)(λ−1 + ξ)(κ2
e + ξ)]1/2

. (A 57)

In the limit of a thin ellipsoidal core when κe � 1, he(λ, 0) is expressed through a
complete elliptic integral of the first kind K (ε)

he = 2(1− ε2)1/4K(ε), ε2 = 1− b2
e

a2
e

. (A 58)

corresponding to the internal rotational frequency (A 42).
Thus, (A 54)–(A 57) yields the energy conservation for the EM model:

dH

dt
=

M∑
k=1

[Ẋk∂XkH + Ẏ k∂YkH + λ̇k∂λkH + φ̇k∂φkH] = 0. (A 59)

A.6. Comparison with two-dimensional vortex interactions

It is useful to compare the 3D EM model with its 2D analogue when

G =
1

4π
ln 2ρ =

1

2π
ln r, Ĝ = Υ =

1

4πρ
=

1

2πr2
, Ω = 0. (A 60)
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Thus, in the 2D limit from (A 26), we see that Bα = 0 because of Ωα = 0, and from
(A 25)–(A 27) with (A 60), we obtain the formulae (67) in the paper by Melander et
al., (1986) if we represent total vorticity of the core as Qα = ωαAα, assuming ωα is the
two-dimensional vorticity, Jα = Aα/4π, and A is the core area. Further, (A 39)–(A 40)
correspond to equations (59)–(60) in the paper by Melander et al. (1986) with the
self-induced rotation frequency

φ̇(i) =
qλ

(1 + λ)2
(A 61)

corresponding to well-known Kirchhoff’s solution which describes exactly steady
rotation of an elliptic vortex.

The problem of the interaction two identical vortices in the two-dimensional limit
is described by (21)–(24) on substituting (A 60). In this case Q = 4πqJ, µ = 0 and
if we normalize the distance between vortices by r0 = (A/π)1/2 = 2J1/2 expressions
(A 60) become

Ĝ = Υ =
1

2π(σ2 + 2− ν) . (A 62)

Thus, (30)–(32) which describe the stationary states, can be written as

σ2 = λ+
1

λ
− 2 +

1

2ω(i)

(
1 +

2λ2

λ2 − 1
+ F

)
, F =

λ2 − 1

λ(σ2 + 2)− λ2 − 1
(A 63)

with the normalized self-induced rotational frequency (A 61),

ω(i) =
4πJφ̇(i)

Q
=

λ

(1 + λ)2
. (A 64)

The system (A 63)–(A 64) corresponds to equation (28) in the paper by Melander
el al. (1988). We see that (A 63) is a quadratic equation for σ2, hence the angular
momentum is explicitly expressed through the aspect ratio λ. The value of σ increases
either when λ→ 1 or λ→ ∞. Thus, two solutions exist when σ exceeds its minimum
value σcr . As shown by Melander et al. (1988), this pair of stable and non-stable
stationary states corresponds to the centre and saddle points of H .

Note, that in two dimensions the term F in the right-hand side of (A 63) gives only
a small correction because large σ is the basic assumption of the two-dimensional
moment model. If we consider the minimum value of σ defined by the minimum of
the right-hand side of (A 63) while neglecting F , we obtain σcr ≈ 2.96 at λ ≈ 1.97,
which is quite close to the critical value σcr = 3.08 at λ = 1.93 obtained from (A 63)
taking into account a correction term F .

A.7. Thin-core and ellipsoidal vortices

For the circular disk-shaped core of radius rd with uniform thickness 2hd, the area of
each horizontal section is the same, so that

Wd = 2hdAd, Jd =
2πhd
Wd

∫ rd

0

r3dr =
Ad

4π
, (A 65)

while for the circular ellipsoidal core of radius re with the vertical semi-axis ce the
thickness varies as 2ce(1− r2/r2

e )
1/2, so that

We = 4
3
ceAe, Je =

2πce
We

∫ re

0

(
1− r2

r2
e

)1/2

r3dr =
Ae

5π
. (A 66)
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Thus, for an equivalent ellipsoid with the same volume We = Wd and the horizontal
moment Je = Jd, we have

ce

re
= χ

hd

rd
, χ =

12

5
√

5
. (A 67)

The self-induced rotational frequency for a thin elliptical vortex can be expressed in
the form

φ̇
(i)
k =

qkhk

rk
ωd(λk), (A 68)

where

ωd(λ) = 2

(
λ

λ2 − 1

)3/2(
2

π
ln[λ+ (λ2 − 1)1/2] +

2

π
tan−1 1

(λ2 − 1)1/2
− 1

)
. (A 69)

Note, that (A 69) is obtained using approximations of a thin and nearly elliptical
vortex core when variations of the aspect ratio due to the self-interaction are small in
contrast to exact expression (A 42) for a thin ellipsoidal core. However, actually the
difference between (A 42) and (A 69) is small.
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